IMPACT: International Journal of Research in Applied, Natural and Social Sciences (IMPACT: IJRANSS) ISSN (P): 2347–4580; ISSN (E): 2321–8851 Vol. 10, Issue 8, Aug 2022, 49–56

© Impact Journals

PARAMETRIC METRIC SPACE AND FIXED POINT THEOREMS

Arun Kumar Garg & Satyendra Ahirwar

Research Scholar, Department of Mathematics, Madhyanchal University, Bhopal, India

Received: 17 Aug 2022 Accepted: 22 Aug 2022 Published: 24 Aug 2022

ABSTRACT

There are many generalization of metric space. Parametric metric space is the generalization of metric space too. Which was introduced and studied by Hussian (a new approach to metric space) in 2014. In present paper we prove two fixed point theorems based on injective mapping using contraction conditions. Moreover, we provide an example to furnish our result and also the usability of our result.

Mathematics Subject Classification (MSC): 47H10, 54H25

KEYWORDS: Unique Fixed Point, Contraction, Parametric Metric Space, Injective Mapping

INTRODUCTION

General Introduction

A metric on a nonempty set X is a mapping $d: X \times X \to [0, \infty]$ satisfying the following properties:

- d(x, y) = 0 If and if x = y
- $\bullet \quad d(x, y) = d(y, x)$
- $d(x, y) \le d(y, z) + d(z, y)$; then the pair (X, d) is said to be a metric spaces.

The theory of metric spaces is the general theory which covers several branches of mathematical analysis, as real analysis, complex analysis, multidimensional calculus, etc. Due to which, existence and uniqueness of fixed points and common fixed points has become a subject of great concern. In the recent six decades many authors generalized the Banach contraction Principle by moderating the triangular inequality of a metric space as generalized metric space[see 2,5,7 8,14,22 and references therein], cone metric space[see 9 references therein], b metric space[see 2,3,4,6 references therein], cone b metric space[see9,10,11,14-22 references therein], rectangular metric space [see 17 references therein], cone rectangular metric space [see 12,17,18 references therein], are some of the generalizations of metric space introduced by different authors in past few decades. Analogue Banach contraction principle, Kannan contraction principle, Ciric contraction principle and lots of the existing fixed point theorems for various generalized contractions were proved in these generalized spaces.

Most of the generalization of metric space are Hausdorff topology but we can also find generalization of metric space which are not necessarily Hausdorff topology (see, ref. [13, 19, 22,]). Tarskian mathematician used non Hausdorff topology for programming language semantics used in computer science.

The purpose of this paper is to prove some fixed point theorems for contraction mapping in parametric metric spaces an example is also given to distinguish our results.

PRELIMINARIES

Proceeding to our main result, let we furnish some definition, proposition, properties & lemmas needed in sequel.

- 1. Let X be a non empty set and Tp: $X \times X \times (0, \infty) \to (0, \infty)$ be a map on X such that $\forall x, y, z \in X$ and t > 0
 - Tp(x, y, t) = 0 if and only if x = y
 - $\operatorname{Tp}(x, y, t) = \operatorname{Tp}(y, x, t)$
 - $\operatorname{Tp}(x, y, t) \leq \operatorname{Tp}(x, z, t) + \operatorname{Tp}(z, y, t)$

Then Tp is called parametric metric and pair (X, d) is called parametric metric space.

- If $\log n \to \infty(xn, x, t) = 0 \Rightarrow \log n \to \infty$ xn = x, for all t > 0 then sequence $\{xn\}n = 1\infty$ converses $x \in X$
- If $\log n \to \infty(xn, xm, t) = 0$ for all t > 0 then sequence $\{xn \} n = 1\infty$ is called Cauchy sequence.
- If every Cauchy sequence is convergent, then parametric metric space (X, d) is a complete parametric metric space.
- Let (X, d) be a parametric metric space and $T: X \to X$ be a mapping, then We say T is a continuous mapping at p in X, if for any sequence $\{xn\}n=1 \infty \in X$ such that $\log n \to \infty$ $xn=x \Rightarrow \log n \to \infty$ Txn=Tx.

Main Result

The objective of this paper is to prove some new fixed point theorems in parametric metric space. This paper is divided in two sections. In Section I and II we prove theorems on parametric metric spaces

SECTION I

Theorem 2

Let (X, d) be a complete parametric metric space and $Tp: X \to X$ be an injective mapping satisfying the condition

$$(2.1) \quad d(T_{p}x, T_{p}y, t) \leq a. d(x, y, t) + b. d(x, T_{p}x, t) + c. d(x, T_{p}y, t) + d. \left(\frac{d(x, T_{p}x, t).d(y, T_{p}y, t)}{d(x, y) + d(x, T_{p}x, t)}\right) + e. \left(\frac{d(x, T_{p}x, t).d(x, T_{p}y, t)}{d(x, y) + d(x, T_{p}x, t)}\right)$$

 $\forall t \in [0,1)$; a, b, c, d, e > 0; $x, y \in X \& x \neq y$ have a fixed point if a + b + 2c + d2 + e < 1 and moreover a unique fixed point if a + c < 1.

Proof

Let $x0 \in X$, Define iterative sequence $\{xn\}n=1\infty$ follows: Tpxn=xn+1 for $n=1,2,3,\ldots$ If for some n, Tpxn=xn, then xn is the fixed point. Otherwise $Tpxn\neq xn$, using inequality (2.1)

$$\begin{aligned} d(x_{n+1},x_{n+2},t) &= d\left(T_px_n,T_px_{n+1},t\right) \\ &\leq a.d\left(x_n,x_{n+1},t\right) + b.d\left(x_n,T_px_n,t\right) + c.d\left(x_n,T_px_{n+1},t\right) \\ &+ d.\left(\frac{d\left(x_n,T_px_n,t\right).d\left(x_{n+1},T_px_{n+1},t\right)}{d\left(x_n,x_{n+1},t\right) + d\left(x_n,T_px_n,t\right)}\right) + e.\frac{d\left(x_n,T_px_n,t\right).d\left(x_n,T_px_{n+1},t\right)}{d\left(x_n,x_{n+1},t\right) + d\left(x_n,x_{n+1},t\right)} \\ d(x_{n+1},x_{n+2},t) &\leq a.d\left(x_n,x_{n+1},t\right) + b.d\left(x_n,x_{n+1},t\right) + c.d\left(x_n,x_{n+2},t\right) \\ &+ d.\left(\frac{d\left(x_n,x_{n+1},t\right).d\left(x_{n+1},x_{n+2},t\right)}{d\left(x_n,x_{n+1},t\right) + d\left(x_n,x_{n+1},t\right)}\right) + e.\left(\frac{d\left(x_n,x_{n+1},t\right).d\left(x_n,x_{n+2},t\right)}{d\left(x_n,x_{n+1},t\right) + d\left(x_n,x_{n+1},t\right)}\right) \\ d(x_{n+1},x_{n+2},t) &\leq a.d\left(x_n,x_{n+1},t\right) + b.d\left(x_n,x_{n+1},t\right) + c.\left[d\left(x_n,x_{n+1},t\right) + d\left(x_{n+1},x_{n+2},t\right)\right] \\ &+ d.\left(\frac{d\left(x_n,x_{n+1},t\right).d\left(x_{n+1},x_{n+2},t\right)}{2.d\left(x_n,x_{n+1},t\right)}\right) + e.\left(\frac{d\left(x_n,x_{n+1},t\right).d\left(x_n,x_{n+2},t\right)}{2.d\left(x_n,x_{n+1},t\right)}\right) \\ d(x_{n+1},x_{n+2},t) &\leq a.d\left(x_n,x_{n+1},t\right) + b.d\left(x_n,x_{n+1},t\right) + c.\left[d\left(x_n,x_{n+1},t\right) + d\left(x_{n+1},x_{n+2},t\right)\right] \\ &+ d.\left(\frac{d\left(x_n,x_{n+1},t\right).d\left(x_{n+1},x_{n+2},t\right)}{2.d\left(x_n,x_{n+1},t\right)}\right) + e.\left(\frac{d\left(x_n,x_{n+1},t\right).d\left(x_{n+1},x_{n+2},t\right)}{2.d\left(x_n,x_{n+1},t\right)}\right) \\ d(x_{n+1},x_{n+2},t) &\leq a.d\left(x_n,x_{n+1},t\right) + b.d\left(x_n,x_{n+1},t\right) + c.\left[d\left(x_n,x_{n+1},t\right) + d\left(x_{n+1},x_{n+2},t\right)\right] \\ &+ d.\left(\frac{d\left(x_n,x_{n+1},t\right).d\left(x_{n+1},x_{n+2},t\right)}{2.d\left(x_n,x_{n+1},t\right)}\right) + e.\left(\frac{d\left(x_n,x_{n+1},t\right).d\left(x_{n+1},x_{n+2},t\right)}{2.d\left(x_n,x_{n+1},t\right)}\right) \\ d(x_{n+1},x_{n+2},t) &\leq a.d\left(x_n,x_{n+1},t\right) + b.d\left(x_n,x_{n+1},t\right) + c.\left[d\left(x_n,x_{n+1},t\right).d\left(x_{n+1},x_{n+2},t\right)\right] \\ &+ d.\left(\frac{d\left(x_{n+1},x_{n+2},t\right)}{2.d\left(x_{n},x_{n+1},t\right)}\right) + e.\left(\frac{d\left(x_n,x_{n+1},t\right).d\left(x_{n+1},x_{n+2},t\right)}{2.d\left(x_n,x_{n+1},t\right)}\right) \\ d(x_{n+1},x_{n+2},t) &\leq a.d\left(x_n,x_{n+1},t\right) + b.d\left(x_n,x_{n+1},t\right) + c.\left[d\left(x_n,x_{n+1},t\right) + d\left(x_{n+1},x_{n+2},t\right)\right] \\ &+ d.\left(\frac{d\left(x_n,x_{n+1},t\right).d\left(x_n,x_{n+1},t\right)}{2.d\left(x_n,x_{n+1},t\right)}\right) \\ d(x_{n+1},x_{n+2},t) &\leq a.d\left(x_n,x_{n+1},t\right) + b.d\left(x_n,x_{n+1},t\right) + c.\left(\frac{d\left(x_n,x_{n+1},t\right).d\left(x_n,x_{n+1},t\right)}{2.d\left(x_n,x_{n+1},t\right)}\right) \\ d(x_{n+1},x_{n+2},t) &\leq a.d\left(x_n,x_{n$$

e < 1. Therefore by successive iteration/ we have $d(xn+1, xn+2, t) \le k^n d(x0, x1, t)$

As we know if $\{xn\}n\to\infty$ be a sequence in parametric space(X, d) such that $d(xn+1, xn+2, t) \le k \ d(xn, xn+1, t)$ $\forall t \in [0,1) \& n = 1,2,3, \dots$ then $\{xn\}n\to\infty$ is a Cauchy sequence in (X, d). Since (X, d) is a complete parametric space; $\{xn\}n\to\infty$ converses. Let $x*\in X$, then $\lim_{n\to\infty} xn\to x*$. Again Tp is continuous, therefore

$$T_p x^* = T_p(\lim_{n \to \infty} x_n) = \lim_{n \to \infty} T_p x_n = x^* \Rightarrow T_p x^* = x^*$$

Implies Tp has a fixed point Tpx* = x* in X.

Now we will show that x* is unique. For that, suppose y* is another fixed point therefore Tpy* = y*. Therefore by inequality (2.1) we have

$$\begin{split} d\big(T_{p}x^{*},T_{p}y^{*},t\big) &\leq a.\,d(x^{*},y^{*},t) + b.\,d\big(x^{*},T_{p}x^{*},t\big) + c.\,d\big(x^{*},T_{p}y^{*},t\big) \\ &+ d.\left(\frac{d\big(x^{*}T_{p}x^{*},t\big).\,d(y^{*},T_{p}y^{*},t)}{d(x^{*},y^{*},t) + d\big(x^{*},T_{p}x^{*},t\big)}\right) + e.\left(\frac{d\big(x^{*},T_{p}x^{*},t\big).\,d\big(x^{*},T_{p}y^{*},t\big)}{d(x^{*},y^{*},t) + d\big(x^{*},T_{p}x^{*},t\big)}\right) \\ d(x^{*},y^{*},t) &\leq a.\,d(x^{*},y^{*},t) + b.\,d(x^{*},x^{*},t) + c.\,d(x^{*},y^{*},t) + d.\left(\frac{d(x^{*}x^{*},t).\,d(y^{*},y^{*},t)}{d(x^{*},y^{*},t) + d(x^{*},x^{*},t)}\right) \\ &+ e.\left(\frac{d(x^{*},x^{*},t).\,d(x^{*},y^{*},t)}{d(x^{*},y^{*},t) + d(x^{*},x^{*},t)}\right) \\ d(x^{*},y^{*},t) &\leq a.\,d(x^{*},y^{*},t) + c.\,d(x^{*},y^{*},t) \\ &\Rightarrow (1-a-c)d(x^{*},y^{*},t) \leq 0 \end{split}$$

$$\Rightarrow d(x^{*},y^{*},t) = 0 \text{ Since } a+c < 1 \Rightarrow x^{*} = y^{*}. \text{ Hence } T_{p} \text{ has a unique point.}$$

SECTION II

Theorems

Let (X, Tp) be a complete parametric metric space and $Tp: X \to X$ be an injective mapping satisfying condition

$$\left(T_p x, T_p y, t\right) \leq \alpha \max\{d(x, y, t), \frac{d(x, T_p x, t)d(y, T_p y, t)}{d(x, y, t)}, \frac{d(x, T_p y, t)d(y, T_p x, t)}{d(x, y, t)}, \frac{d(x, T_p x, t)d(x, T_p y, t)}{2d(x, y, t)}\}$$
(3.1)
$$\forall t \in [0, 1); \ \alpha > 0; x, y \in X \& x \neq y \ \text{and} \ \alpha \in [0, 1] \ \text{,then} \ T_p \ \text{has a unique fixed point.}$$

Proof

Let $x0 \in X$ be an arbitrary point, Define iterative sequence $\{xn\}n=1\infty$ follows: Tpxn=xn+1 for n=1,2,3,... If for some n, Tpxn=xn, then xn is the fixed point. Otherwise $Tpxn\neq xn$, using inequality (3.1)

$$\begin{split} d(x_{n+1},x_{n+2},t) &= d\left(T_p x_n, T_p x_{n+1},t\right) \\ &\leq \alpha \max\{d(x_n,x_{n+1},t), \frac{d\left(x_n, T_p x_n,t\right) d\left(x_{n+1}, T_p x_{n+1},t\right)}{d(x_n,x_{n+1},t)}, \frac{d\left(x_n, T_p x_{n+1},t\right) d\left(x_{n+1}, T_p x_n,t\right)}{d(x_n,x_{n+1},t)}, \\ &\qquad \qquad \frac{d\left(x_n, T_p x_n,t\right) d\left(x_n, T_p x_{n+1},t\right)}{2d(x_n,x_{n+1},t)} \} \\ &\leq \alpha \max\{d(x_n,x_{n+1},t), \frac{d(x_n,x_{n+1},t) d\left(x_{n+1},x_{n+2},t\right)}{d(x_n,x_{n+1},t)}, \frac{d(x_n,x_{n+2},t) d\left(x_{n+1},x_{n+1},t\right)}{d(x_n,x_{n+1},t)}, \end{split}$$

$$\begin{split} \frac{d(x_n,x_{n+1},t)d(x_n,x_{n+2},t)}{2d(x_n,x_{n+1},t)} \} \\ &\leq \alpha \max\{d(x_n,x_{n+1},t), \frac{d(x_n,x_{n+1},t)d(x_{n+1},x_{n+2},t)}{d(x_n,x_{n+1},t)}, 0, \frac{d(x_n,x_{n+1},t)\{d(x_n,x_{n+1},t)+d(x_{n+1},x_{n+2},t)\}}{d(x_n,x_{n+1},t)} \} \\ &\leq \alpha \max\{(d(x_n,x_{n+1},t),d(x_{n+1},x_{n+2},t),0,d(x_n,x_{n+1},t)+d(x_{n+1},x_{n+2},t)\} \\ &\Rightarrow d(x_{n+1},x_{n+2},t) \leq \alpha \ d(x_n,x_{n+1},t) \end{split}$$

Therefore by successive iteration

$$d(x_{n+1}, x_{n+2}, t) \le \alpha^n d(x_0, x_1, t)$$

$$d(x_{n+1}, x_{n+2}, t) \le \alpha^n d(x_0, x_1, t)$$

As we know if $\{xn\}n \to \infty$ be a sequence in parametric space (X, d) such that $d(xn+1, xn+2, t) \le \alpha n \ d(x0, x1, t)$

 $\forall t \in [0,1) \& n = 1,2,3, \dots$ Then $\{xn\}n \to \infty$ is a Cauchy sequence in(X, d). Since (X, d) is a complete parametric space; $\{xn\}n \to \infty$ converses. Let $x* \in X$, then $\lim_{n \to \infty} xn \to x*$. Again Tp is continuous, therefore

$$T_p x^* = T_p(\lim_{n \to \infty} x_n) = \lim_{n \to \infty} T_p x_n = x^* \Rightarrow T_p x^* = x^*$$

Implies Tp has a fixed point Tpx* = x* in X.

Now we will show that x* is unique. for that suppose y* is another fixed point therefore Tpy* = y*. Therefore by inequality (5.1) we have

Example: Let (X, d) be a complete parametric metric space, where $Tp: R+ \rightarrow R+$ is a mapping defined as d(x, y, x)

 $\Rightarrow d(x^*, y^*, t) = 0$ since $\alpha > 1 \Rightarrow x^* = y^*$. Hence T_p has a unique point.

t = t|x - y|q such that $x_n = 1 + \frac{1}{n}$ and $y_n = 1 + \frac{2}{n}$, therefore

$$d(x_n, y_n, t) = t|x_n - y_n|^q = t \left| 1 + \frac{1}{n} - 1 - \frac{2}{n} \right|^q = t \left| -\frac{1}{n} \right|^q = t \frac{1}{n^q}$$

$$\log_{n \to \infty} d(x_n, y_n, t) = \log_{n \to \infty} t \frac{1}{n^q} = t \log_{n \to \infty} \frac{1}{n^q} = 0 \text{ for } t > 0$$

$$\Rightarrow \log_{n \to \infty} d(x_n, y_n, t) \to 0$$

as both $x_n = 1 + \frac{1}{n}$ and $y_n = 1 + \frac{2}{n}$ tends to 1 as $n \to \infty$. Hence 1 is the fixed point.

Hence it satisfies all the conditions of complete parametric metric space for t > 0 and of theorems [2,3].

REFERENCES

- 1. Achari J. (1983): "Fixed point theorems for a class of mappings on non-Archimedean probabilistic metric spaces, Mathematica, 25, 5-9,
- 2. Alamgir Khan M, Sumitra (2008) "Common fixed point theorem in 2 N. A. Menger PMspace for R-weakly commuting maps of type (P)", Novi Sad J. Math. (38)(2),145-152.
- 3. Alamgir Khan M Sumitra: "A common fixed point theorem in non-Archimedean Menger PM-space", Novi Sad J. Math., Vol. 39(2), 81-87.2009
- 4. Alamgir Khan M and Sumitra: "Common fixed point theorems in non-Archidean Menge PM-space", 5(1),1-13,2010
- 5. Bota,M, Molnar,A and Varga,C: "On ekeland's variational principle in b-metric spaces", Fixed Point Theory no. 2, 21-28, 12 (2011).
- 6. Chugh,R kumar,V, and Kadian,T:: Some fixed point theorems for multivalued mappings in generalized b-metric spaces, International Journal of Mathematical Archive, no. 3, 1198-1210, 3 (2012).
- 7. Czerwik,S: "Contraction mappings in b-metric spaces", Acta Mathematica et Informatica Universitatis Ostraviensis, 5-11. 1 (1993).
- 8. Czerwik S., Nonlinear set-valued contraction mappings in b-metric spaces, Atti. Sem. Mat. Fis. Univ. Modena 46 (1998), 263-276.
- 9. J. R.Morales and E.Rojas: "Cone metric spaces and fixed point theorems of T –Kannan contractive mappings" arXiv: 0907. 3949v2 [math. FA] 26 Oct. 2009
- 10. Kir,M, Kiziltunc,H: "On some well known fixed point theorems in b-metric spaces", Turkish Journal of Analysis and Number Theory, 1, no. 1, 13-16. (2013).
- 11. Khan, M.S: "A fixed point theorem for metric spaces", Rent. Inst. Mat. Univ. Trieste, Vol. III, Fasc. 10 1 4. (1976).
- 12. L.G.Haung and X.Zhang: "Cone metric spaces and fixed point of contractive mapping", J. Math. Anal.

- 13. M. Jleli, B. Samet, The Kannan's fixed point theorem in a cone rectangular metric space, J. Nonlinear Sci. Appl. 2 (3) (2009), 161–167.2009
- 14. N.Shioji, T.Suzuki and W.Takahashi: "Contraction mappings, Kannan mappings and metric completeness" Proceedings of the American Mathematical Society, vol.126, No. 10, 3117-3124, October 1998
- 15. R. George, Hossam A. Nabwey, K. P. Reshma and R. Rajagopalan: "generalized cone b- metric spaces and contraction principles" MATEMATIQKI VESNIK, 67, 4 (2015), 246–257, December 2015
- 16. R.George, B.Fisher, "Some generalized results of fixed points in cone b-metric space", Math. Moravica 17 (2) (2013), 39–50.,2013
- 17. S.Rezapour and R.Hamibarani: "Some notes on the paper Cone metric spaces and fixed point Theorems of contractive mappings" J. Math. Anal. Appl., 345, (2), 719-724, 2008
- 18. Shi, L, Xu, S: "Common fixed point theorems for two weakly compatible self-mappings in cone b-metric spaces", Fixed Point Theory and Applications, no. 120. 2013
- 19. S. Moradi: "Kannan fixed point theorem on complete metric spaces and on generalized metric spaces depend on another function" arXiv: 0903, 1577v1[math. FA]
- 20. T. Suzuki, "Generalized metric spaces do not have compatible topology", Abstract Appl. Anal. 2014, Art. ID 458098, 5 pages.
- 21. T. Van An, N. Van Dung, Z. Kadelburg, S. Radenovi'c, "Various generalizations of metric spaces and fixed point theorem"s, Rev. Real Acad. Cienc. Exac., Fis. Nat., Ser. A, Mat. 109,1 (2015), 175–198.
- 22. Z. Kadelburg, S. Radenovi'c, Fixed point results in generalized metric spaces without Hausdorff property, Math. Sci. 8:125 (2014).
- 23. Shukla, Manoj Kumar, and Surendra Kumar Garg. "Common Fixed Point Theorem In S Fuzzy Metric Spaces." International Journal of Applied Mathematics & Statistical Sciences (IJAMSS) 5.6 (2016):29-36
- 24. Tiwari, Ankita, et al. "A Fixed Point Theorem in Fuzzy Metric Space with Semicompatible and Reciprocally Continuous Map." International Journal of Applied Mathematics & Statistical Sciences (IJAMSS) 3.3 (2014):1-8